Roll No.
Code No. Q-4311

SECOND SEMESTER EXAMINATION 2021-22 M.Sc. - MATHEMATICS
 Paper - I

 Advanced Abstract Algebra-II

 Advanced Abstract Algebra-II}

Time : 3.00 Hrs.
Max. Marks : 80
Total No. of Printed Page : 03
Mini. Marks : 29
Note: Question paper is divided into three sections. Attempt question of all three section as per direction. Distribution of Marks is given in each section.

Section - 'A'

Very short type question (in few words).
$6 \times 2=12$
Q. 1 Attempt any six question from the following questions :
(i) Define finitely congenerated Module.
(ii) Show that Infinite Cyclic groups are not artinian.
(iii) Let A be an $m x n$ matrix over PID. Then show that rank $A=$ column rank A.
(iv) Define Torsion Element.
(v) Define Noetherian Module.
(vi) Show that Z is a noetherian ring but not an artinian - ring.
(vii) Define Semi - Simple ring.
(viii) Define Row Rank and Column Rank of a Matrix.
(ix) Define Principal Right Ideal.
(x) Give only statement of Third isomorphism theorem.

Section - 'B'

Q. 2 Attempt any four question from the following questions :
(i) Every homomorphic image of an artinian module is artinian.
(ii) Let N be a nil ideal in a noetherian ring R Then N is nilpotent.
(iii) Obtain the Smith normal form and rank for the matrix with integral entries.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 0
\end{array}\right]
$$

(iv) State and proof "First isomorphsm theorem".
(v) Find the abelian group generated by $\left(x_{1}, x_{2}, x_{3}\right)$ subject to

$$
\begin{aligned}
& 5 x_{1}+9 x_{2}+5 x_{3}=0 \\
& 2 x_{1}+4 x_{2}+3 x_{3}=0 \\
& x_{1}+x_{2}-3 x_{3}=0
\end{aligned}
$$

(vi) Show that the abelian group generated by x_{1} and x_{2} subject to $2 x_{1}=0,3 x_{2}=0$ is isomorphic to $z /(6)$.
(vii) Show that $Z /\left(P_{1} P_{2}\right)$ is completely reducible Z - module, where P_{1} and P_{2} are distinct primes.

Section - 'C'

Long answer/Essay type question.
Q. 3 Attempt any four question from the following questions:
(i) Prove that the intersection of all prime ideals in a noetherian ring is nilpotent.
(ii) Let $R=\left\{\left.\left(\begin{array}{ll}x & y \\ o & o\end{array}\right) \right\rvert\, x, y \varepsilon \theta\right\}$ Show that R is a left artinian ring (without unity) but not right artinian.
(iii) Find the invariant factors of the matrix.
$\left[\begin{array}{ccc}-x & 4 & -2 \\ -3 & 8-x & 3 \\ .4 & -8 & -2-x\end{array}\right]$ over the
ring $Q[x]$. Also find the rank.
(iv) Let M be a finitely generated module over a principal ideal domain R .

Then $\quad M=F \oplus$ Tor M.
Where (i) $\quad F \simeq R^{s}$ for some non-negative integer \wp and
(ii) Tor $M \simeq R / R a, \oplus \ldots . . \oplus R / R$ ar where
ai are non-zero non-unit elements in R such that $a_{1}\left|a_{2}\right| \ldots . . \mid a_{r}$
(v) If R is a noetherian ring then show that $a b=1, a, b \varepsilon R$ if and only if $\mathrm{ba}=1$.
(vi) Prove that a Boolean noetherian ring is finite and is a finite direct product of fields with two elements.
(vii) Find the invariant factors of the matrix

$$
\left[\begin{array}{ccc}
x+1 & 2 & -6 \\
1 & x & -3 \\
1 & 1 & x-4
\end{array}\right]
$$

over the ring $Q[n]$. Also find the rank.

